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An expression is obtained for the dielectric constant of a displacive ferroelectric in its unpolarized phase. 
This has been derived with the use of a Hamiltonian treated by Szigeti in connection with the temperature-
dependent dielectric constant of the alkali halides. In the present work, however, it is assumed that the "soft 
ferroelectric mode" is unstable in the harmonic approximation, i.e., has an imaginary frequency associated 
with it. The linear response can be obtained exactly for this Hamiltonian. It is shown that the lowest order 
anharmonic interaction that can stabilize this mode is of fourth order. In the classical limit, the potential 
energy terms and the term linear in the electronic moment lead to a Curie-Weiss behavior of the dielectric 
constant. The most significant effect arising from the presence of terms of higher order than linear in the 
electric moment is to make the Curie constant temperature dependent. It is suggested that an observed 
temperature-independent contribution to the dielectric constant cannot be unambiguously attributed to 
the electronic polarization or temperature-independent infrared active modes of the system. 

INTRODUCTION 

ABOVE the ferroelectric transition, the dielectric 
constant of BaTiOs and related isomorphs is large 

and exhibits a Curie-Weiss type temperature depend
ence. It has been suggested that this behavior results 
from a near cancellation of the short-range restoring 
forces and the long-range driving forces on the ions.1 

Anharmonic terms in the lattice potential energy are 
held responsible for the temperature dependence of the 
dielectric constant. Since the Curie temperature is posi
tive, the anharmonic interactions stabilize the system 
above its transition temperature. Cochran2 has sug
gested that the Curie-Weiss behavior of the dielectric 
constant results from the temperature dependence of a 
long-wavelength transverse optical mode of the lattice. 
The suggested temperature dependence of this mode has 
been observed in SrTiOs by Barker and Tinkham3 from 
infrared reflectivity measurements and more recently by 
Cowley4 from the inelastic scattering of slow neutrons. 
At the transition temperature the frequency of this 
mode should go to zero and the lattice displacements as
sociated with this mode become unstable. A transition 
is made to the ferroelectric state. If anharmonic inter
actions do stabilize the system above the transition 
temperature, the harmonic part of the frequency as
sociated with this mode is an imaginary quantity. One 
cannot systematically consider the effects of anharmonic 
interactions on the equilibrium properties of a paraelec
tric material by expanding the free energy in powers of 
the anharmonic coupling coefficients about the harmonic 
state. Such an expansion would lead to divergences. To 
avoid this difficulty, all quantities should be expanded 
about their thermal averages.5 In this manner, one can 
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systematically derive the thermal equilibrium properties 
of a ferroelectric material in its unpolarized phase. 

To illustrate this procedure, we will derive an ex
pression for the temperature-dependent dielectric con
stant of a paraelectric material.6 A Hamiltonian such as 
Szigeti7 treated in discussing the temperature depend
ence of the dielectric constant of the alkali halides will 
be considered. Therefore, not only will third- and fourth-
order anharmonic terms in the potential energy ex
pansion be taken into account, but also electron cloud 
deformation through the presence of a second- and 
third-order electronic moment. The long-wavelength 
transverse optical modes which become unstable causing 
a transition to the ferroelectric state are, however, as
signed imaginary frequencies. All such modes will be 
collectively labelled with zero wave vector and treated 
as a single mode in the following analysis. Thus, k=0 
will mean that we consider a mode with wavelength 
large compared with the lattice parameter but small 
compared with the sample size. This procedure is pos
sible since the total number of such wavelengths is 
small compared with the total number of wavelengths 
of the optical branch.8 Also, since the phase transition of 
BaTiOs is relatively free of fluctuation effects, it appears 
that at the transition very few of the lattice modes 
become unstable.9 Indeed, as Anderson has pointed out, 
the very basis of Devonshire's success in using the same 
free energy function for both paraelectric and ferroelec
tric phases of BaTi03 is due to the small number of 
unstable modes at the transition. 

The Hamiltonian that is treated in the following 
section includes all lowest order effects of anharmonic 
interactions and electron deformations on the dielectric 
constant. It will be shown that the exact linear response 
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can be obtained for this Hamiltonian. The fourth-order 
anharmonic interaction with a positive coupling coeffi
cient stabilizes the system at temperatures above the 
transition temperature. Third-order anharmonic inter
actions of either sign raise the instability temperature. 
The largest effect due to the presence of the electronic 
deformation terms is the contribution to an additive 
constant term F, appearing in the dielectric constant at 
temperatures high compared with the Curie temperature. 

The first two terms, Hi and H2, in Eq. (1) are the 
harmonic contributions to the energy from all modes 
other than those that become unstable in the harmonic 
approximation. The w&a and o)k° are the frequencies of 
the acoustical and optical modes having wave vector k, 
respectively. The a** and ak are just the usual creation— 
destruction operators for a mode of wave vector k which 
satisfy the following commutation relations: 

The third term is the contribution to the energy from 
the mode that becomes unstable at the transition. qo° 

This term then contributes —EM to the energy. E is the 
macroscopic field and N is the number of ion pairs. The 
calculation is performed for two atoms per unit cell and 
the transverse optical mode of this model is chosen as 
the soft temperature-dependent ferroelectric mode. This 
enables us to calculate the temperature dependence of 
the dielectric constant from the soft mode. Contribu
tions to the dielectric constant arising from other optical 
vibrations appear just as additive constants in the final 
result. The fifth term in the Hamiltonian ZZ3, arises 
from the presence of a second-order moment and third-
order potential. F{k) describes the third-order anhar
monic coupling. Since the creation-destruction operators 
appear in the same way for the moment and potential 
terms, they have been grouped together accordingly. 
The last two terms in the Hamiltonian H4 and H5, are 
contributions from a third-order moment and fourth-
order potential. G°(k) and Ga(k) describe the fourth-

e-l = C/(T-Tc)+F. 

This indicates that one cannot unambiguously assign 
the origin of such a term to the electronic polarization or 
to the other "hard" optical modes of the lattice. 

TEMPERATURE-DEPENDENT DIELECTRIC 
CONSTANT 

The Hamiltonian of the svstem is 

and po° are the normal mode coordinate and conjugate 
momentum, respectively, of this long-wavelength trans
verse mode. The negative of (o?o0)2 is the square of the 
imaginary harmonic frequency of this mode. The only 
difference between the Hamiltonian of Eq. (1) and the 
one treated by Szigeti7 is due to the presence of this 
term. This term will allow a lattice instability to develop 
at a positive temperature. The fourth term in Eq. (1) is 
due to the presence of a linear electric moment, a, A (k), 
and B(k) describe the linear, second-order, and third-
order moment, respectively. The total electric moment 
M, is written 

e order anharmonic couplings for optical modes and 
e acoustic modes, respectively. Moment and potential 
1 terms have again been grouped for convenience. This 
s Hamiltonian has been derived by the assumption of a 
s cubic structure with a center of symmetry for the 
f material under consideration. The ideal perovskite 

structure fulfills these requirements. 
1 The Hamiltonian [Eq. (1)] is transformed by a 
,1 unitary transformation 

s e^He<^H+ilH,S2-hU:H,SlS2+---, (2) 
with transformation operator 5 given by 

1 S=i • £ »*,,g(*)(at«+aL.t'*)(a_*<>-a*'*) 

- •—-£«*•*(*)(«*•-«-*•*) (a-*'+a*<*). (3) 
y/N * 

+L F(k)+EA(k) _, .. .1— 
* U/iV J(«fc"w 
h r(q»°y-

, (K)2 ?o 

k-r- *L N v-
G°(/b)+£^—B'(k) 

L .v v^v J 
h 

X—(a,"+a_*°*) (a_,"+ak°*)+E G'(k)+E B"(k) —(a*-+a_*«*) («_*•+«*•*) 
uh° *L N \/N Jut" 

--H1+H2+iZ(p0°y- (Wo>°)2]-a£iV1V+^3+H4+ff5. (1) 

h 
M^aNMqo'-Z A (A) (ai"+a_*»*)(a_4"+a*0*) 

* (OH-W)1 '2 

O0° k 00° * 

- E B°(k)—(a*°+a_fc°*)(a_*°+a*°*)-£ B"(k)—(tft«+<n«*)(<n-+aik«*). 
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This form has been chosen for S so that # 3 can be since 
eliminated from the transformed Hamiitonian by [(fl^+fl^), 5 ] 
suitably choosing the g(k). . 

iqo°n 

Therefore, 

«w= 

; [ ( f f i+H 2 ) , s ]+# 3 =o . 

\/N\ 

qa" L\/N 
-F(k)+EA(k) 

(«*•«*•) »*A 

and where 

-, (5) 

E «(*)**(<**•+*-*•*) («-*'+<»*•*), (6) 

Other commutation relations of use are: 

[H 3 ,5 ]=2» E — F ( * ) + £ i 4 (*) 
2 ft 

W*°A* 
-(ak°+a-k°*)(a-k0+ak°*) 

-2*2: 
it 

90° 

y W 
•F(*)+£4(Jfc) 

wt°Afc 
-(<»*•+«-***) (a-*»+a*«*), (7) 

(8) 

(9) 

r (9o°) 2 90° 1 9 " ° 
[ f f 4 ^ ] = - 4 » L G°(/fe)+£ £•(*) P—»g(ft)(fl^*»+a*'>*)(a*'+fl-t«*), 

* L A7 \/N J\/N 
r(9u")2 90° 1 qo" 

[ffi,5] = 4»E G«(ft)+£ S«(ft) **(*)(a*«+a-***)(<i-*''+a*'*), 
* L N y/N J\/N 

I K ,2 ft 
[[(J5r,+£r,), 5] , 5 ] = - 2 E — F ( * ) + £ J (fc) (a*»+a-*«*) (*_*•+<**•*) 

* l-s/^7 I wt0At 

+ 2 E l F(k)+EA(k)\ (a*-+«L***) (<*-*•+«*•*). (10) 
* \\/N I to^A* 

The following relations have been used to write the preceding results in the form shown: 

G°{-k) = G°(k), B'(-k) = B'(k), 

G°(-k) = G'(k), B"(-k) = Ba(k). 

With the use of these commutation relations, the transformed Hamiitonian HT can be written 

r(?o")2 qo" 1 

/ /r=E »«*•(«*•*<»*•+*)+£ fo*'(«A*°+J)+|[(K)!-(«.V)2]-aM1V+E G°(k)+E B'(k) 
* * * L .V y/N J 

(qo")2 qo' 
X—iak'+o-rtia-t'+art+j: G'(k)+E B'(k) 

Uk" k L N VN 

-ift 
) — ( a k

a + a . 
Jo>ka 

:_*•*) (<L*B+a*»*) 

y/M 

ft qo" 
F(k)+EA (k) | (<u°+«-*0*)(«-*' ,+a*°*)+E F(k)+EA (k) 

oik°Ak WN 

X (a t«+a_t«*)(a_t«+a t«*)+4 E 
• ( « . " ) ?0 

.v V 
i° - i r ?o" 
-B'(k) — . 
x Jlv.v 

F(k)+EA (k) 

ft r(qo0)2 q0° -vrqn0 

X- ; (a„k°+ak°*)(ak°+a-k"*)-4Z \ ——G'(k)+E—B'(k) -F(k)+EA(k) 
(wk°Uka)mAk ~k L .V V-

h 
X-

(wt'to*-)1'1^* 
(<L* e+a* 0*)(a»»+a- f c -*)-JC[f l r"^]>5]+- • •, (11) 

where H" is #— (Hi+Hi). Terms linear in the third-order anharmonic coupling coefficient F(k) and second-order 
moment coefficient A (k) have been eliminated from the Hamiitonian. Terms bilinear in both coefficients do, how-
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ever, appear. The preceding transformation has been performed since only the terms diagonal in the creation-
destruction operator that we have exhibited explicitly in the Hamiltonian [Eq. (11)] will contribute to the linear 
response of the system. This will be shown in what follows. Let us group the diagonal terms and label them HD. 
Since the state of thermal equilibrium will be considered, one can also set 

ak*ak=a-.k*a-k. (12) 
Therefore, 

If T4 ft 4 ft 

* k 21 LAT k a)k° N k uk
a 

X (**•***«+*) E I F(k) |2 (ok<*ak°+$)+- Z\F(k)\2 ( a f c **a* '+£) - (a>0*)2] (<?o0)2 

X k co^Ak X k o>k
aAk J 

2Fq0<> ft 2Eq{)° ft 
- a E A ^ V + £ £ « ( * ) — ( a * ° * a * ° + £ ) + - L B*(k) (ak**ak*+h) 

\ /A7 * «JI-0 \/-V * wfc° 

4Ea0° ft 4Etf0° ft 
E F ( i ) 4 ( - i ) (ak<*ak°+S)+ Z F(k)A(-k) (ak**ok'+$) 

\/N k u fc°A* y/N k uk
aAk 

ft ft 
-2FJZ\A(k)\* (ak<*ak°+$)+2&Z\A(k)\* (a*°*a*a+£). (13) 

* co*0A* fc wjt°Afc 

The partition function of the system is 

Z = L„<w | e-^*' | »>=£»<» I < r ^ - ^ ' | » ) ; 0 = 1/*B2\ (14) 

ZT contains all terms nondiagonal in the creation-destruction operator and diagonal terms originating from 
\JLH"7S2,S~] and higher order commutators. 

Expand the partition sum in powers of Hf 

p& /.Xi /*M 

Z=I(w|e-^|w)+I I ( - l ) w ' d\J d\2 d\ 
n n n'-l JQ J 0 J0 

/•Xn'— 1 

• • • / dkn,(n\e^-VHDH'e&r-™Hl>H'- -e~x«'H»\n) = Z°+Z'. (15) 
J Q 

I t will be shown that in the limit of infinite normalization nk
a and nk° are just the phonon occupation numbers for 

volume, i.e., N-+ <», Z' will not contribute to the linear the kih acoustic and optical mode, respectively. Note 
response. The free energy F can be written that one can consider the coefficient in front of (go0)2 as 

(. , , . , the square of an effective frequency Q, which is de-
"~ ^ /£U » \ ) pendent upon the occupation of all nonzero wave vector 

and, hence, the polarization is given by phonon states. 

P=-dF/dE=(l/f3Z)(dZ/dE). (17) 4 f t 4 f t 
. 0 ^ ) = - Z — G » ( A ) ( « A * + £ ) + - L —~Ga(k) 

1 o obtain the linear response it is therefore only neces- Ar * wk° N k o)k
a 

sary to examine, at most, terms quadratic in the 

Z»=Zn(n\e~e»»\n). (18) 4 h 

The trace is evaluated in a representation for which the + 7 ; 2-1 ̂ W I2 ~ - (^& a +2)~ (^o0)2. (20) 
afĉ afc are diagonal. One can then write 

/j= Y (noIe-W*'*-«**\n) (19) l i w i U b e s h o w n t h a t "*" a n d Wfc° c a n b e r i g ° r o u s l y r e" 
nonA. ( ' ' placed by average values («*°) and (WA-°) to be defined. 

If Q2((nk)) is positive at all temperatures, the material 
with HD(nk,qo°) given by Eq. (13), however with will not make a transition to a ferroelectric state at any 
aka*dka and ak°*ak° replaced by nk

a and nk°} respectively, temperature. If this quantity changes sign at a temper-
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ature for which the phonon occupation numbers can be cantly from the classical values, then deviations from a 
replaced by their classical values, then Curie-Weiss behavior of the dielectric constant will be 

ffl~(T—Tc), (21) observed before the material goes through a phase 
and above the transition the dielectric constant should transformation."This is apparently observed in KTa03» 
follow a Curie-Weiss law. This is observed for such ma- S i n c e w e a r e interested in the linear response, the 
terials as BaTi03, PbTi03, and KNb03. If the square partition function is expanded to terms in E2. Terms 
of this frequency changes sign at a temperature for linear in E are dropped since they will vanish when the 
which the phonon occupation numbers deviate signifi- average over the q0

o coordinate is performed. 

Z°= £ /«ojexp{-/3 £ ^*0(w*°+§)-/8 L W(«*°+§)-M>o' ,2+n2(«*)?o''2]} 
no.nk \ J k k 

i r 2 h 2 h 
X l+i/3*£V2 -«NW+ £ B°(k}—(nk°+$)+ £ Ba(k)—(nk«+h) 

[ L \/N k Q)k° y/N Wk
a 

4 h 4 h I2 

£ F(k)A(-k) (**'+*)+ E F ( i M ( - i ) (nk
a+i) 

\/N k o>k°Ak VN k uk
a&k J 

h h I I \ 
+20£2£MW!2 (nk°+h)-2fiE2Z\A(k)\" (»*a+i) UoV (22) 

k WA;0AA; k 0)k
aAk J I / 

In the limit of infinite normalization volume, i.e., A7 —» QO, the result of performing the sums over the nk is to just 
replace the nk by their thermal average {nk) in all terms except the first two appearing in the exponential. (nk) is 
given by 

W = i ; » * nke-^n^»/Znk e-^^n^K (23) 

This statement can be proved as follows. Expand all terms in the partition sum about the thermal average (w*), 
except the first two appearing in the exponential. The first term in the expansion is just Eq. (22), with all the nk 

replaced by (nk) except the first nk
a and nk° in the exponential, i.e., 

(Z°)= Z W e x p [ - 0 E f c f e * « ( w f c + J ) - 0 L f c ^ ^ (24) 
no,nk 

R is easily defined by comparing Eq. (24) with (22). It can be seen that all terms quadratic in the applied field are 
proportional to the number of ion pairs in the normalization volume. In view of Eq. (17) the polarization is, there
fore, proportional to the normalization volume as expected.12 

The next term in the expansion is 

/ I dR(nk>
a
}nk>

0,qo°)\ I v 
£ (no exp[-/3 £ fa*k«(nk«+\)-$ £ »«*•(**'+*)] £ (»*'-<**» Uo). (25) 

no,nk \ I k k k' dUk> \(nk') I ' 

All such terms vanish identically with the use of Eq. (23). The only nonvanishing term in next order is 

/ I 1 ^R{nk'
a,nk'

0,qo0)\ I \ 
£ C no exp[-/8 £ ««*«(fi*M-J)-j8 £ W(***H-i)] £ (»*'-<»*'»2 w0). (26) 

no.nk \ I * k k' 21 dflk'
2 \(nk>) I ' 

Contributions from this term that are quadratic in the applied field vary as N° and are therefore neglected. Contri
butions to the terms independent of the applied field vanish as N~l when N —> oo. In a similar fashion, it can be seen 
that all higher order terms in such an expansion also vanish in the limit of infinite normalization volume. Therefore, 
fluctuations about the thermal values (nk) do not contribute to the linear response. 

Similarly, one can show that contributions to the linear response from H' [Eq. (14)] also vanish in the limit of 
infinite normalization volume. For that part of W which is nondiagonal in the creation-destruction operators, there 
are no linear terms of the form 

10 J. H. Barrett, Phys. Rev. 86, 118 (1952). 
11 J. K. Hulm, B. T. Matthias, and E. A. Long, Phys. Rev. 79, 885 (1950). 
12 "Polarization" as defined here is the dipole moment per normalization volume, 
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- E f ikiinleto-nitBH'e-MDln). (27) 
n Jo 

The first nonvanishing contribution will come from a term of second order in H', namely, 

E / dkj d\2(n\e^-t)H°H'e^™HDHfe-x*H»\n}. (28) 
n ./o Jo 

Contributions from this term that are quadratic in the applied field vary as N° and are, therefore, neglected. 
Contributions to terms independent of the applied vanish as N~l as N —» <». In a similar fashion, it can be seen 
that all higher order terms in such an expansion do not contribute to the linear response. An examination of the 
terms of Hf that are diagonal in the creation-destruction operators will also show that they cannot contribute to the 
linear response of the system, so we can write [using Eqs. (17) and (24)] 

1 d(Z°) 
P= . (29) 

0<Z°> BE 

Equation (29) is an exact expression for the linear response of the system described by the Hamiltonian given by 
Eq. (1) in the limit of infinite normalization volume. 

To evaluate (Z°), matrix elements between the zero wave vector states must be taken and then the sums per
formed over all phonon occupation numbers. Since the final result is independent of the number of k = 0 phonons, 
this procedure can be simplified by treating p0° and qo° as classical variables. One can, therefore, write 

/

OO / .OO 

dp,' / dqtf R((nk'),(nk'),qo")j: exp[ - /3 £ fru*-(»*«+4)-i8 £ fco/b°(n*»+i)], 
-oo J— oo n * k k 

which gives 

< Z ° > = L e x p [ - j 8 E * « * - ( * * ^ «„*•>+*) 
nk k k 0Q I k 0)fc°Afc 

(30) 

ft frE2r 2 f t 2 
-2p&Z\A(k)\* « * * • > + * ) + — -aNW+ T,B'(k}— ««*•>+*)+ l B « ( i ) 

* «*aA* 202L y/N k o)k° \/N k 

X — « » * • > + * ) — E F(k)A(~k) «»*">+*)+ E F(f tM(-f t ) « n * - > + i ) l 
Uka y/N h a>fc°Afc V ^ k wfc

aAfc J 

Using Eqs. (29), (31), the definition of the dielectric constant e, 

(31) 

4TT P 
(€— i) = (t, i s the volume of the unit cell), (32) 

Nv E 

and the average phonon occupation number [Eq. (23)2 

1 
<»*> = , (33) 

one can write 

Sir ft hoik° 8TT ft fta>ta 

e ~ l = E M W I 2 coth E M W I 2 coth 
Nv k 0)koAk 2kT Nv k Wjfc°Afc 2kT 

4TT 1 I 

+ 
Nv Q2\ 

1 ft ftwfc° 1 ft ftcofc
a 

-a ,V l "+ E ^ ° W coth + E B"(k) coth 
\/N k uk° 2kT V-V * co," 267 

2 ft fuak° 2 ft ftajjt" 
E ^(AM (-A) coth + E F(*M ( - k ) coth , 

VN k co^A, 2kT y/N k a>k«Ak 2kTJ 
, (34) 
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with 

2 h hwk 
G2=— £ —G° (k) coth _ 

N * o)k° 2kT N k o)k
a 

2 h htab
a 

- Z —G*(k) coth 
2kT 

2 h huk° 
E | ^ 0 ) | 2 coth 

.V * wk°Ak 2kT N h 

2 h ho)k
a 

Z\F(k)\2 - c o t h ^ ^ - f a o * ) 2 . (35) 
WfcaA* 2kT 

If the deformation terms are absent, we obtain 

e - l = 47r(a2/W02. (36) 

In the classical limit of high temperature 

i ? - ( r - r c ) , (37) 

and the dielectric constant follows a Curie-Weiss law. 

€ - i = c / ( r - r c ) . (38) 

If the system does not spontaneously polarize at any 
positive temperature, it is then stabilized at T=0 by 
zero-point quantum-mechanical fluctuations. The dielec
tric constant [Eq. (36)] is independent of temperature 
in the vicinity of absolute zero. Note, however, that at 
intermediate temperatures the temperature dependence 
of the dielectric constant is, in general, different from 
the temperature dependence of Barrett's expression.10 

This difference arises since Barrett's calculation is based 
upon an Einstein model of the lattice and neglects the 
variation of lattice frequencies with wave vector. 

In the classical limit, the dielectric constant with 
inclusion of the deformation terms |[Eq. (34)] can be 
written as 

€- i=i4r+[c / ( r - r c ) ]Ci+JBr+z>p] . (39) 

A, B,C, D are temperature-independent constants. The 
term linear in temperature appears since the presence of 
a second-order electronic moment makes it possible for 
the field to drive modes other than the soft mode. This 
term should contribute a very small amount to the total 
dielectric constant. The presence of the higher order 
electronic moments also produces a temperature-de
pendent Curie constant. The third-order moment and 
the product of second-order moment with the third-
order potential contribute to the linear temperature 
dependence of the Curie constant. The quadratic tem
perature-dependent term involves the squares of the 
coupling coefficients appearing in the linear term. One 

can, therefore, conclude that the largest effect on the 
dielectric constant arising from the treatment of the 
deformation terms is to make the Curie constant vary 
linearly with temperature. At temperatures high com
pared with the Curie temperature, the dielectric con
stant [Eq. (39)] can be written 

6-i=[c/ ( r - rc)]+F. (40) 

Therefore, if one fits the temperature dependence of the 
dielectric constant with an expression of the form of 
Eq. (40) over a wide range of temperature above the 
Curie temperature, one cannot attribute the value 
obtained for F solely to the presence of temperature-
independent infrared active modes. Electronic de
formations may contribute to this term.13 

In the preceding discussion we have treated the 
crystal as if it were clamped, i.e., we have neglected any 
effect due to thermal expansion. If one knows the pres
sure dependence of the dielectric constant, compressi
bility, and volume coefficient of thermal expansion, the 
temperature dependence of the dielectric constant of the 
material at fixed volume can be separated from the 
temperature dependence due to thermal expansion.14 To 
obtain an accurate separation of the intrinsic tempera
ture effect from this volume effect, these three quantities 
must be known over the range of temperatures for which 
the dielectric constant is measured. Such data are not 
available at present and, therefore, preclude the possi
bility of making an accurate comparison of our results 
with experiment. 

13 There can, however, be one additional contribution to this 
constant term. This arises from terms which are of the sixth order 
in the potential energy and do not appear in the Szigeti Hamil-
tonian. This number can be of the same order of magnitude as the 
contribution to this constant arising from the electronic de
formations. 

14 E. E. Havinga, J. Phys. Chem. Solids 18, 1 (1961); R. Fuchs, 
Technical Report 167, Laboratory for Insulation Research, Massa
chusetts Institute of Technology (unpublished). 


